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1  | INTRODUC TION

A common goal in ecological and evolutionary studies is to under‐
stand what drivers and factors might be involved in population, 
species, community and palaeontological changes (e.g. Brook, 
Sodhi, & Bradshaw, 2008; Charmantier et al., 2008; Ezard, Aze, 
Pearson, & Purvis, 2011; Turchin, 1999), and their mechanisms 
of effecting such changes. In some cases, it is possible to de‐
vise controlled experiments to dissect the contributions of var‐
ious variables to ecological or evolutionary changes. However, 
where data stem from natural populations and communities, 
inferences must often be made from time series data that are 
patchy, uncertain and mere proxies for underlying processes 

(Houle, Pelabon, Wagner, & Hansen 2011) that we are attempting  
to measure.

Several tools are available for inferring connections, if any, be‐
tween two or more time series, including transfer entropy (Schreiber, 
2000) and cross convergent mapping (Sugihara et al., 2012), both of 
which are non‐parametric (see review in Hannisdal & Liow, 2018). 
Here, we present software in the form of an r package, layerana-
lyzer, for a third approach, namely linear stochastic differential equa‐
tions (SDEs, see Allen, 2003; Øksendal, 2003). Linear SDEs in the form 
of Ornstein–Uhlenbeck (Lande, 1976) and Wiener processes (Raup, 
1977) have long been used for modelling phenotypic evolution and in 
phylogenetic comparative analyses (Hansen, 1997; Hansen, Pienaar, 
& Orzack, 2008). However, more general linear SDEs have also 
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Abstract
1. Distinguishing correlative and causal connections among time series is an impor‐

tant challenge in evolutionary biology, ecology, macroevolution and palaeobiology.
2. Here, we present layeranalyzer, an r package that uses linear stochastic differ‐

ential equations as a tool for parametrically describing evolutionary and ecological 
processes and for modelling temporal correlation and Granger causality between 
two or more time series.

3. We describe the basic functions in layeranalyzer and briefly discuss modelling 
strategies by demonstrating our tool with three disparate case studies. First, we 
model a single time series of phenotypic evolution in a bird species; second, we 
extract cyclical connections in the well‐known hare‐lynx dataset; third, we infer 
the correlative and causal connections among the genus origination and extinc‐
tion rates of brachiopods and bivalves.

4. We summarize the advantages and limitations of using linear stochastic differential 
equations and layeranalyzer for studying correlative and causal connections.
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been applied to questions of causality in biology relatively recently 
(Hannisdal, Haaga, Reitan, Diego, & Liow, 2017; Liow, Reitan, & Harnik, 
2015; Reitan & Liow, 2017; Reitan, Schweder, & Henderiks, 2012).

Linear SDEs offer process models of how a given set of time se‐
ries were generated, such that correlations and Granger causality 
(Granger, 1969) can be distinguished, especially for continuous time 
processes (Schweder, 1970). Granger causality is based on informa‐
tion flow. Roughly speaking, process B (Granger) causes process A if 
the predictive probability function for future states of process A is 
different when conditioning on all past states of all processes, and 
on conditioning on all past states of all processes, except process B 
(e.g. Eichler, 2013 and Supporting Information for details on causal 
connections).

Some advantages of linear SDEs as a time series tool are as fol‐
lows. (a) The stochasticity of the processes can be separated from 
measurement noise, as the processes have temporal correlations 
while the latter does not. (b) Measurements do not need to be 
taken at equidistant time steps, unlike in ARIMA‐based methods 
(Box, Jenkins, & Reinsel, 1994, see Chapter 2) and analysed time 
series can in fact be ‘gappy’. This is especially useful for ecological 
and palaeontological data which are rarely equally spaced in time. 
(c) Process connections can be explored where measurements are 
not made at the same time points, as long as there is overlap in the 
time series. (d) Hidden processes (‘layers’) affecting the measured 
time series can be explicitly modelled. (e) Causal feedback loops 
can be modelled. (f) Measurement uncertainty can be incorporated 
in analyses. (g) Non‐stationarity such as linear trends and random 
walks are permitted such that detrending data is not necessary. (h) 
Linear SDEs are analytically tractable (Reitan et al., 2012).

Here, we describe a new r package layeranalyzer that para‐
metrically characterizes time series and models temporal correlation 
and Granger causality using linear SDEs. We provide three different 
examples to illustrate the types of ecological and evolutionary ques‐
tions layeranalyzer can be used to answer.

2  | OVERVIE W OF LAYERANALYZER

layeranalyzer characterizes measurements of continuous time 
processes in the form of linear SDEs (for which each realized state is 
normally distributed, conditioned on the previous state), where meas‐
urement noise is also assumed to be normal. The analytically calcu‐
lated expected values and covariance matrices (see Supplementary 
Information in Reitan et al., 2012) are used in combination with the 
Kalman filter, a recursive algorithm that performs process state infer‐
ence (Särkkä, Vehtrari, & Lampinen, 2004) and calculates likelihood 
values simultaneously. Our Supporting Information contains a short 
verbal description of this algorithm. The Kalman smoother is used 
for process state inference (see Särkkä et al., 2004 and Supporting 
Information for details), giving inference for the process state at 
each given point in time, conditioned on all parameter values and all 
measurements. While both maximum likelihood (ML) estimation and 
Bayesian inference are possible in layeranalyzer, we focus on 

the latter using Markov chain Monte Carlo (MCMC) sampling. This 
is because Bayesian inference was more reliable than ML for varied 
scenarios we have explored and we found that ML estimation in our 
examples (and likely in general for layeranalyzer) requires good 
starting points provided by the MCMC samples, regardless.

layeranalyzer also allows for detecting whether an observed 
process (such as changing phenotypes, demographic dynamics or di‐
versification rates) is affected correlatively or causally (Granger, 1969) 
by other measured and unmeasured processes. An unmeasured pro‐
cess with a causal connection to another process (itself measured or 
unmeasured) is termed a hidden layer, hence the name of the package. 
The measured process is designated the top layer (i.e. layer 1), while the 
unmeasured, hidden process is the ‘lower’ layer (i.e. layer 2) in a 2‐lay‐
ered system. If another process (i.e. layer 3, the lowest layer in this case) 
drives layer 2, the system would be 3‐layered, and so on. Unmeasured 
processes leave signatures on the autocorrelation structure of ob‐
served processes, allowing us to characterize such unmeasured time 
series. In addition to giving greater flexibility in describing the correla‐
tion structure of a time series, including layers in one's models can be 
motivated by the empirical system being studied. For instance, our ear‐
liest application aimed at distinguishing between the measured pheno‐
type of fossil coccoliths (layer 1) and their optimum phenotype (layer 
2, see Reitan et al., 2012). See the Supporting Information for more on 
layered systems, and for figures of process realizations.

layeranalyzer has four general output types:

1. Model selection. This is relevant when the structure of the 
process (e.g. is it stationary, with or without hidden layers) is 
of interest, and/or if the plausibility of connections between 
two or more processes is examined.

2. Parameter inference. Given the structure and/or connections of 
one or more processes, this output gives estimates and 95% cred‐
ibility intervals for the expected values, stochastic contribution 
strength, the characteristic time of the process(es) and possible 
causal or correlative connection terms. The characteristic time 
describes the auto‐correlation within each process. Note that 
characteristic time and half‐life, an alternative parametrization 
thereof, are related to lag time for causal stochastic processes 
(see Supporting Information).

3. Inference of the process states. This gives estimates and uncer‐
tainties for a reconstruction of how the processes developed over 
time. For each time at which the original measurements of the ob‐
served time series were made, and for unmeasured, but regularly 
spaced time points of interest, an estimate and 95% credibility 
interval can be inferred for the state of each process (measured 
or hidden) conditioned on the measurements. This is done by ap‐
plying Kalman smoothing (which infers processes conditioned on 
both the measurements and parameter values) while varying the 
parameters over the MCMC samples.

4. Process realizations. These are simulations of the processes 
(measured or hidden) given the measurements. Process realiza‐
tions can be of interest when studying the effect of uncertainties 
in the process in subsequent analyses.
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The key function in the layeranalyzer package (Table 1) is layer.
analyzer, which analyses a single model (which may include multiple 
time series). Options for the layer.analyzer function include:

a. Process structure: The default model fitted for a single time 
series is a one‐layered Ornstein–Uhlenbeck process (Table 1). 
However, non‐stationary Wiener processes, linear trends or 
periodicity are alternative options available. Hidden layers can 
also be imposed.

b. Causal connections: One process x1(t) (measured or hidden) 
can affect another, x2(t), where β1,2 denotes the strength of 
the causal connection. Specifically, if x1(t) changes by one unit, 
x2(t) will gradually change by β1,2 units. This can be modelled 
with the option ‘causal’. Causal connections can be uni‐or 
bidirectional.

c. Correlative connections: A correlative connection is inferred if 
x1(t) and x2(t) are affected by the same stochastic perturbatio and 
this is modelled using the option ‘corr’.

d. Group options. Comparable measurements from grouped loca‐
tions can be analysed as a clustered set of processes with the 
same structure (see Reitan et al., 2012).

3  | C A SE STUDY 1:  ONE TIME SERIES OF 
PHENOT YPIC CHANGE

The data analysed in this example are the body size measurements of 
individuals of Acrocephalus scirpaceus over a 19‐year period (Sætre et 
al., 2017). The authors suggested that these reed warblers evolved 
rapidly to a smaller optimal body size as described by an Ornstein–
Uhlenbeck process.

We performed an automatic model search for process structure 
using the function traverse.standalone.layered after con‐
forming the size measurements and their uncertainties into a layer.
data.series object. We summarized the ML based (option do.
maximum.likelihood=True in traverse.standalone.lay-

ered) model search output using the function compare.layered, so 
we could compare our model selection results with those of Sætre et 
al. (2017). traverse.standalone.layered has an option for the 
maximum number of layers explored. In this example, we set this to two 
(i.e. maximum one hidden layer), with the lowest layer being either an 
OU process, an OU process with linear time trend or a Wiener process.

According to the layeranalyzer AICc model choice, there were 
no hidden layers in the body size data. However, an OU process with 
a linear time trend was slightly better than a pure OU process (see 
Supporting Information Table S1). This suggests that the size of A. scir‐
paceus started above the optimal body size, but the optimal body size 
was increasing (Figure 1), a more nuanced view of what Sætre et al. 
(2017) concluded. The characteristic time, which summarizes the auto‐
correlation (which drops to 1/e for a time interval equal to the charac‐
teristic time) of the process, was estimated to 2.5 years. In other words, 
the process lags 2.5 years behind the slow‐moving trend for increasing 
body size. (See Supporting Information for other parameter estimates.)

4  | C A SE STUDY 2:  T WO TIME SERIES OF 
POPUL ATION GROW TH

The Canadian hare–lynx system, first described by MacLulich 
(1937) and later Elton and Nicholson (1942), is a classic preda‐
tor–prey cycle with feedback loops that has been repeatedly re‐
analysed (e.g. Trostel, Sinclair, Witers, & Krebs, 1987; Vik, Brinch, 

TA B L E  1   Functions and objects in layeranalyzer. See Supporting Information for code and details

 Description

Objects

layer.data.series Contains single time series and associated information

layer.prior Specifies prior knowledge concerning the processes in question

layer.series.structure Specifies process structure (number of layers, lowest layer = OU, linear trend OU or Wiener process, 
deterministic layers etc.) and layer.data.series and layer.prior

Functions

layer.analyzer Used for single model analysis. It takes as input one or more layer.series.structure objects, 
connection specifications and run options and returns parameter estimates and model selection 
criteria

summary.layered Outputs summary of a single layer.analyzer object

compare.layered Outputs model comparison of multiple layer.analyzer objects

traverse.standalone.layered Performs multiple calls to layer.analyzer for a layer.data.series object in order to explore the 
process structure of a single time series

traverse.connections.layered Performs multiple calls to layer.analyzer for 2 or more layer.series.structure objects to 
explore connections between process structures belonging to multiple time series. Causal connec‐
tions, causal feedback loops and correlative connections can be tested

read.layer.data.series Reads and converts a file containing a table with time points, values and possibly other valid time series 
information (sites, standard deviation, number of samples) directly into a layer.data.series object



4  |    Methods in Ecology and Evoluon REITAN ANd LIOW

Boutin, & Stenseth, 2008). We use this system to illustrate how 
layeranalyzer can be used to infer feedback loops. Note that 
we here use count data from traps as a proxy for yearly abundance 
(as done by previous authors), which is in turn used as a proxy for 
the continuous expected abundance process in our models (see 
May, 1973).

Before analyses, we normalized the count data (see Supporting 
Information). We then applied the function traverse.stand-
alone.layered on hares and lynx separately. These independent 
searches revealed that the normalized hare and lynx counts each 
conform to a two‐layered model with negative feedback from first to 
second layer, suggesting a negative‐positive feedback loop with an 
unmeasured process. In other words, a positive‐negative feedback 
loop leading to cyclical behaviour can be gleaned from just one time 
series with layeranalyzer. We know from previous work that 
lynx abundance might be driving hare abundance. To explicitly ex‐
plore this, we imposed an OU‐like process as the structure for each 
of these two measured time series. Then we searched for connec‐
tions between the hare and lynx data using the function traverse.

connections.layered and compared the resulting models using 
compare.layered.

By rerunning the layer.analyzer function on the model 
deemed best using the smoothing.specs option, we provide es‐
timates for the processes (Figure 2). We specified in smoothing.
specs, that in addition to performing inference for the measured 
points, we wanted inference for regularly spaced time points (ten 
per year), in order to get an almost continuous process state infer‐
ence over time. We do not have estimates for the standard devia‐
tion of each measurement error for these datasets. For such cases, 
layer.analyzer introduces a parameter for each time series that 
represents a common standard deviation for all the measurement 
errors.

5  | C A SE STUDY 3:  THREE TIME SERIES 
OF DIVERSIFIC ATION R ATES

In this example, we reproduce the analyses in Reitan and Liow 
(2017), with simplifications, to illustrate how three or more time 
series can be investigated simultaneously using layeranalyzer. 
Reitan and Liow (2017) investigated how the diversification dy‐
namics of whole clades might influence those of different clades 
with similar niches using genus origination and extinction rates 
of bivalves and brachiopods estimated in Liow et al. (2015). The 
best model describing these processes is one where high bivalve 
extinction rates drove brachiopod origination rates through more 
than 450 million years of their evolutionary history (Reitan & Liow, 
2017). There was also a causal connection from bivalve to brachio‐
pod extinction rates.

We constrain the enormous number of joint process models ex‐
amined in Reitan and Liow (2017) to 25 by (a) reducing the original 
six observed time series (Reitan & Liow, 2017) to only three (b) only 
analysing models where one connection has been added, changed 
or removed relative to the model considered best by Reitan and 
Liow (2017) and (c) assuming the same prior knowledge of the sys‐
tem for the purpose of demonstration. Specifically, we assume that 
the structure of these three time series, namely extinction rates for 
brachiopods and bivalves (one hidden layer each) and the origina‐
tion rates for brachiopods (only one measured layer) are known, to 

F I G U R E  1   Changes in Acrocephalus scirpaceus body size. Yearly 
mean natural log body mass (g) of individuals of A. scirpaceus, with 
their 95% confidence intervals. The solid line shows the inferred, 
linearly changing optimal body size from the best model

F I G U R E  2   Lynx and hare process state 
inference. The plotted points are empirical 
data while black lines are estimated means 
and grey lines are 95% credibility bands. 
Lynx data start in 1897 and end in 1939 
(with 1914 missing), while hare data start 
in 1864 and end in 1935. Note that the 
uncertainty bands make small ‘bubbles’ 
between each years as the models are 
in continuous time and the uncertainty 
increases between measurements
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reduce analysis time. Note that in addition to affecting their corre‐
sponding observed processes, hidden layers also function as com‐
mon causes in a connection analysis. Since we are examining a fixed 
set of models rather than traversing all possible models, we use 
layer.analyzer to examine each of the 25 models and then use 
compare.layered to compare and evaluate them afterwards (see 
Supporting Information for details).

Using layeranalyzer, we find that the process model pre‐
sented in Reitan and Liow (2017), was indeed the best one among 
the 25 models examined, according to the Bayesian model likelihood 
and resulting model probability (see Supporting Information for pa‐
rameter estimates and comparisons with estimates from Reitan and 
Liow (2017)).

6  | C AUTIONARY NOTES AND FUTURE 
DE VELOPMENT FOR LINE AR SDES AND 
LAYERANALYZER

Linear SDEs perform well in recovering correlative and causal pro‐
cesses under the set of scenarios we have explored (see Supporting 
Information in Liow et al., 2015). While a comprehensive exploration 
of the performance of this tool is out of the scope of the current 
work, we have provided simulation tools for users to investigate the 
behaviour of layeranalyzer (see the project web page https ://
github.com/trond reita n/layer analyzer).

Since linear SDEs are Gaussian processes, the input data are as‐
sumed to be normally distributed, and two of our examples required 
transformation to meet this assumption. Additionally, in order to 
calculate an analytical likelihood, measurement noise should be also 
normally distributed.

Nonlinear connections between processes, such as in the 
Lotka–Volterra model for predator–prey relationships (Lotka, 
1910) breaks the underlying assumption of linear SDEs. That said, 
such a linear model can still capture the salient features of non‐
linear connection models, as demonstrated in the hare‐lynx ex‐
ample. However, highly nonlinear connections cannot be correctly 
modelled using this tool, even with data‐transformation. By using 
linear SDEs, there is also an implicit assumption that each process 
depends on its previous state (as well as the state of other con‐
nected processes) in a linear fashion. It is worth exploring how 
each residual might depend on the previous residual where this 
is a concern, by using, for instance, nonlinear regression tools. 
Where nonlinearity is a serious concern, nonparametric tools such 
as cross convergent mapping (Sugihara et al., 2012; Ye, Deyle, 
Gilarranz, &amp; Sugihara, 2015) could be explored (see Hannisdal 
& Liow, 2018 for a review).

Even when the processes are normal and depend linearly on 
the previous state values, the measurements might be highly 
non‐normal, such as in the case of counts (especially low counts) 
and presence/absence data. In our second example, we have fol‐
lowed previous literature in simply using (large) counts as prox‐
ies for continuous processes. However, for future applications 

to such data, we plan on developing a GLM version of the linear 
SDE toolbox, where data can be linked to the underlying linear 
process(es) using a set of standard distribution families via a link 
function.

In summary our tool layeranalyzer provides a means to char‐
acterize and quantify ecological and evolutionary processes from 
time series data.
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